Zoubin Ghahramani

Zoubin Ghahramani is Lecturer in the Gatsby Computational Neuroscience Unit at University College London.

  • Advances in Neural Information Processing Systems 14

    Advances in Neural Information Processing Systems 14

    Proceedings of the 2001 Conference

    Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani

    The proceedings of the 2001 Neural Information Processing Systems (NIPS) Conference.

    The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2001 conference.

    • Hardcover $20.75

Contributor

  • Practical Applications of Sparse Modeling

    Practical Applications of Sparse Modeling

    Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil

    Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision.

    Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.

    Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.

    ContributorsA. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing

    • Hardcover $61.00
  • Predicting Structured Data

    Predicting Structured Data

    Gökhan BakIr, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, and S.V.N Vishwanathan

    State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.

    Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

    Contributors Yasemin Altun, Gökhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daumé III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Pérez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Schölkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston

    • Hardcover $47.00
    • Paperback $45.00